Какой процесс называется транскрипцией. Этапы транскрипции. Обратная транскрипция - создание ДНК-копии по матрице РНК

ТРАНСКРИПЦИЯ в биологии (син. матричный синтез РНК ) - синтез рибонуклеиновой кислоты на матрице дезоксирибонуклеиновой кислоты. Т., происходящая в живых клетках, представляет собой начальный этап реализации генетических признаков, заключенных в ДНК (см. Дезоксирибонуклеиновые кислоты). В результате Т. образуется РНК (см. Рибонуклеиновые кислоты) - точная копия одной из нитей ДНК по последовательности азотистых оснований в полинуклеотидной цепи. Т. катализируется ДНК-за-висимыми РНК-полимеразами (см. Полимеразы) и обеспечивает синтез РНК трех типов: матричных РНК (мРНК), кодирующих первичную структуру белка, т. е. последовательность аминокислотных остатков в строящейся иолипептидной цепи (см. Белки , биосинтез); рибосомных РНК (рРНК), входящих в состав рибосом (см.), и транспортных РНК (тРНК), участвующих в процессе синтеза белка в качестве компонента, осуществляющего «перекодирование» информации, заключенной в мРНК.

Т. у микроорганизмов изучена полнее, чем у высших организмов (см. Бактерии, генетика). Процесс Т., катализируемый РНК-полимеразой, делится на 4 стадии: связывание РНК-полимеразы с ДНК, начало - инициацию - синтеза цепи РНК, собственно процесс синтеза полинуклеотидной цепи - элонгацию и завершение этого синтеза - терминацию.

РНК-полимераза обладает наибольшим сродством к определенным участкам ДНК-матрицы, содержащим специфическую последовательность нуклеотидов (так наз. промоторным участкам). Связывание фермента с таким участком сопровождается частичным локальным плавлением нитей ДНК и их расхождением. На стадии инициации происходит включение первого нуклеотида - обычно аденозина (А) или гуанозина (Г) - в молекулу РНК. В течение элонгации РНК-полимераза локально расплетает двойную спираль ДНК и копирует одну из ее цепей в соответствии с принципом комплементарности (см. Репликация). По мере продвижения РНК-полимеразы вдоль ДНК растущая цепь РНК отходит от матрицы, а двуспиральная структура ДНК после прохождения фермента восстанавливается. Терминация синтеза РНК происходит также на специфических участках ДНК. В нек-рых случаях для распознавания сигналов терминации необходимы дополнительные белки, одним из к-рых является р-фактор, представляющий собой белок с АТФ-азной активностью, в других случаях это могут быть модифицированные азотистые основания. При достижении РНК-полимеразой терминаторного участка синтезированная нить РНК окончательно отделяется от ДНК-матрицы.

Функциональной транскрипционной единицей у микроорганизмов является оперон (см.), включающий один промотор, один оператор и ряд генов, кодирующих полипептидные цепи (см. Ген). Т. оперона начинается со стадии связывания РНК-по-лимеразы с промотором - участком, находящимся в самом начале оперона. Сразу же за промотором расположен оператор - участок ДНК, способный связываться с белком-репрессором. Если оператор свободен, то происходит Т. всего оперона, но если оператор связан с белком-репрессором, Т. блокируется. Все хорошо изученные реп-рессоры представляют собой белки, способные подвергаться аллостерическим изменениям (см. Конформация). Структура белков-репрессоров кодируется регуляторными генами, расположенными или непосредственно перед опероном или на значительном расстоянии от него. Синтез и активность репрессоров определяются условиями вне- и внутриклеточной среды (концентрацией метаболитов, ионов и др.).

Транскрипция ДНК у высших организмов осуществляется отдельными участками, называемыми единицами Т.- транскриптонами. В состав единицы Т. входит ДНК соответствующего гена и примыкающих к нему участков. Представления о структуре единиц Т. получили существенное развитие в связи с выявлением функциональной неравнозначности последовательности участков генов эукариотов. Оказалось, что внутри структурных генов высших организмов находятся так наз. интроны - вставочные последовательности ДНК, не имеющие прямого отношения к кодированию данного белка. Число и размер интронов разных генов сильно варьируют, во многих случаях общая длина всех нитронов значительно превышает длину кодирующей части генов (экзона). Выяснение роли интронов - одна из актуальных задач молекулярной генетики (см.).

В процессе Т. образуется РНК, являющаяся копией всей транскрипционной единицы. В тех случаях, когда гены кодируют синтез белков, первичный продукт Т. называется ядерным предшественником мРНК (про-мРНК), по размеру он в несколько раз превышает мРНК. В состав про-мРНК входят последовательности, транскрибированные на кодирующих участках (экзонах), интронах и, возможно, прилежащих зонах ДНК. В клеточном ядре про-мРНК превращается в зрелую мРНК, происходит так наз. процессинг, или созревание. При этом специфические ферменты взаимодействуют с про-мРНК и избирательно удаляют избыточные последовательности, в частности, те, к-рые синтезированы на интронах. На этой же стадии осуществляются нек-рые модификации РНК, такие, как метилирование, добавление специфических групп и др. Зрелая мРНК, выходящая в цитоплазму, содержит тем не менее избыточные участки, не относящиеся непосредственно к кодированию структуры белка и необходимые, как полагают, для правильного взаимодействия РНК с рибосомами, белковыми факторами трансляции (см.) и др.

Нарушения процесса Т. могут значительно изменять метаболизм клеток. Дефекты ферментов, принимающих участие в синтезе РНК, могут вызывать снижение интенсивности Т. большого числа генов и приводить к значительному нарушению функционирования клетки вплоть до ее гибели.

Генетические дефекты в структуре отдельной единицы Т. являются причиной нарушения синтеза данной РНК (и соответствующего ей белка) и тем самым могут быть основой мо-ногенной наследственной патологии (см. Наследственные болезни).

Существует обратная Т.- синтез ДНК на матрице РНК, при к-ром перенос информации происходит не с ДНК на РНК, как в процессе прямой Т., а в обратном направлении. Обратная Т. была впервые установлена у РНК-содержащих онкогенных вирусов после того, как в зрелых вирусных частицах обнаружили РНК-зависимую ДНК-полимеразу, называемую обратной транскриптазой, или ревертазой (см.). При участии этого фермента в клетке, зараженной вирусами, на матрице РНК синтезируется ДНК, в дальнейшем способная служить матрицей для образования РНК новых вирусных частиц. Синтезированная путем обратной Т. вирусная ДНК может включаться в ДНК клетки-хозяина и тем самым быть причиной злокачественной трансформации клеток. Обратная Т. in vitro обычно используется в исследованиях по генной инженерии (см.) для синтеза на матрицах любых РНК структурных зон соответствующих генов.

Библиогр.: Ашмарин И. П., Молекулярная биология, с. 70, Л., 1974; 3 е н г б у ш П. Молекулярная и клеточная биология, пер. с нем., т. 1, с. 135, М., 1982; Киселев Л. Л. РНК-на-правляемый синтез ДНК. (Обратная транскрипция), М., 1978, библиогр.; Уотсон Дж. Молекулярная биология гена, пер. с англ., с. 268, М., 1978.

С. А. Лимборская.

Транскрипция в биологии - это многоступенчатый процесс считывания информации с ДНК, который является составляющей Нуклеиновая кислота является носителем генетической информации в организме, поэтому важно правильно ее расшифровать и передать другим клеточным структурам для дальнейшей сборки пептидов.

Определение «транскрипция в биологии»

Синтез белка является основным жизненно важным процессом в любой клетке организма. Без создания молекул пептида невозможно поддержание нормальной жизнедеятельности, т. к эти органические соединения участвуют во всех процессах метаболизма, являются структурными компонентами многих тканей и органов, играют сигнальную и регулирующую и защитную роли в организме.

Процесс, с которого начинается биосинтез белка, и есть транскрипция. Биология кратко разделяет его на три этапа:

  1. Инициация.
  2. Элонгация (нарастание цепи РНК).
  3. Терминация.

Транскрипция в биологии - это целый каскад пошаговых реакций, в результате которых на матрице ДНК синтезируются молекулы РНК. Причем таким образом формируются не только информационные рибонуклеиновые кислоты, но также транспортные, рибосомальные, малые ядерные и другие.

Как и любой биохимический процесс, транскрипция зависит от множества факторов. Прежде всего, это ферменты, которые отличаются у прокариот и эукариот. Эти специализированные белки помогают инициировать и проводить реакции транскрипции безошибочно, что важно для качественного получения белка на выходе.

Транскрипция прокариот

Так как транкрипция в биологии - это синтез РНК на матрице ДНК, то в этом процессе главным ферментом является ДНК-зависимая РНК-полимераза. У бактерий существует только один вид таких полимераз для всех молекул

РНК-полимераза по принципу комплиментарности достраивает цепь РНК, используя матричную цепь ДНК. В составе этого фермента есть две β-субъединицы, одна α-субъединица и одна σ-субъединица. Первые две составляющие выполняют функцию образования тела фермента, а остальные две отвечают за удержание фермента на молекуле ДНК и узнавание промотерной части дезоксирибонуклеиновой кислоты соответственно.

Кстати, сигма-фактор служит одним из признаков, по которым распознается тот или иной ген. Например, латинская буква σ с индексом N означает то, что эта РНК-полимераза узнает гены, которые включаются при недостатке азота в окружающей среде.

Траскрипция у эукариот

В отличие от бактерий, у животных и растений транскрипция происходит несколько сложнее. Во-первых, В каждой клетке находятся не один, а целых три вида разных РНК-полимераз. Среди них:

  1. РНК-полимераза I. Она отвечает за транскрипцию генов рибосомальных РНК (исключение составляет 5S РНК субъединицв рибосомы).
  2. РНК-полимераза II. Ее задача состоит в синтезе нормальных информационных (матричных) рибонуклеиновых кислот, которые в дальнейшем участвуют в трансляции.
  3. РНК-полимераза III. Функция этого вида полимераз заключается в том, чтобы синтезировать а также 5S-рибосомальную РНК.

Во-вторых, для узнавания промотора у эукариотических клеток недостачно иметь только полимеразу. В инициации транскрипции также участвуют специальные пептиды, которые называются TF-белками. Только с их помощью РНК-полимераза может сесть на ДНК и начать синтез молекулы рибонуклеиновой кислоты.

Значение транскрипции

Молекула РНК, которая образуется на матрице ДНК, впоследствии присоединяется к рибосомам, где с нее считывается информация и синтезируется белок. Процесс образования пептида очень важен для клетки, т.к. без этих органических соединений невозможна нормальная жизнедеятельность: они в первую очередь являются основой для важнейших ферментов всех биохимических реакций.

Транскрипция в биологии - это еще и источник рРНК, которые а также тРНК, которые участвуют в переносе аминокислот во время трансляции к этим немембранным структурам. Также могут синтезироваться мяРНК (малые ядерные), функция которых заключается в сплайсинге всех молекул РНК.

Заключение

Трансляция и транскрипция в биологии играют исключительно важную роль в синтезе белковых молекул. Эти процессы являются основной составляющей центральной догмы молекулярной биологии, которая гласит о том, что на матрице ДНК синтезируется РНК, а РНК, в свою очередь, является основой для начала формирования молекул белка.

Без транскрипции невозможно было бы считать информацию, которая закодирована в триплетах дезоксирибонуклеиновой кислоты. Это еще раз доказывает важность процесса на биологическом уровне. Любая клетка, будь она прокариотическая или эукариотическая, должна постоянно синтезировать новые и новые молекулы белка, которые нужны в данный момент для поддержания жизнедеятельности. Поэтому транскрипция в биологии - это основной этап в работе каждой отдельной клетки организма.

Жизнь в углеродной форме существует благодаря наличию белковых молекул. И биосинтез белка в клетке является единственной возможностью для экспрессии гена. Но для реализации этого процесса требуется запуск ряда процессов, связанных с «распаковкой» генетической информации, поиска нужного гена, его считывания и воспроизведения. Термин "транскрипция" в биологии как раз обозначает процесс переноса информации с гена на информационную РНК. Это старт биосинтеза, то есть непосредственной реализации генетической информации.

Хранение генетической информации

В клетках живых организмов генетическая информация локализована в ядре, митохондриях, хлоропластах и плазмидах. В митохондриях и хлоропластах имеется незначительное количество ДНК животных и растений, тогда как плазмиды бактерий являются местом хранения генов, ответственных за быстрое приспособление к окружающим условиям.

В вирусных телах наследственная информация также хранится в виде РНК или ДНК-полимеров. Но процесс ее реализации также связан с необходимостью транскрипции. В биологии этот процесс имеет исключительную важность, так как именно он приводит к реализации наследственной информации, запуская биосинтез белка.

В животных клетках наследственная информация представлена полимером ДНК, который компактно упакован внутри ядра. Потому перед тем синтезом белка или считыванием любого гена должны пройти некоторые этапы: раскручивание конденсированного хроматина и «освобождение» нужного гена, его распознавание ферментными молекулами, транскрипция.

В биологии и биологической химии эти этапы уже изучены. Они приводят к синтезу белка, первичная структура которого была закодирована в считанном гене.

Схема транскрипции в эукариотических клетках

Транскрипция в биологии хоть и изучена недостаточно, но ее последовательность традиционно представляется в виде схемы. Она состоит из инициации, элонгации и терминации. Это значит, что весь процесс делится на три составляющие его явления.

Инициация — это совокупность биологических и биохимических процессов, которые приводят к началу транскрипции. Суть элонгации заключается в продолжении наращивания молекулярной цепочки. Терминация — это совокупность процессов, которые приводят к прекращению синтеза РНК. Кстати, в контексте биосинтеза белка процесс транскрипции в биологии принято отождествлять с синтезом матричной РНК. На основании нее позднее будет синтезирована полипептидная цепочка.

Инициация

Инициация — наименее изученный механизм транскрипции в биологии. Что это с точки зрения биохимии, неизвестно. То есть конкретные ферменты, ответственные за запуск транскрипции, совсем не распознаны. Также неизвестными остаются внутриклеточные сигналы и способы их передачи, которые свидетельствуют о необходимости синтеза нового белка. Для цитологии и биохимии это фундаментальная задача.

Элонгация

Разделить процесс инициации и элонгации во времени пока нельзя из-за невозможности проведения лабораторных исследований, призванных подтвердить наличие специфических ферментов и триггер-факторов. Потому данная граница весьма условная. Суть процесса элонгации сводится к удлинению растущей цепочки, синтезированной на основе матричного участка ДНК.

Считается, что элонгация начинается уже после первой транслокации РНК-полимеразы и начала присоединения первого кадона к стартовому участку РНК. В ходе элонгации на деспирализованном и разделенном на две цепочки участке ДНК происходит считывание кадонов по направлению 3"-5"-цепочки. В это же время растущая цепочка РНК прибавляется новыми нуклеотидами, комплементарными матричному участку ДНК. При этом ДНК «расшивается» на ширину 12 нуклеотидов, то есть на 4 кадона.

Фермент РНК-полимераза движется по растущей цепочке, а «сзади» ее происходит обратное «сшивание» ДНК в двухцепочечную структуру с восстановлением водородных связей между нуклеотидами. Это отчасти отвечает на вопрос о том, какой процесс называется транскрипцией в биологии. Именно элонгация является главной фазой транскрипции, потому как в ее ходе собирается так называемый посредник между геном и синтезом белка.

Терминация

Процесс терминации в транскрипции эукариотических клеток слабо изучен. Пока что ученые сводят его суть к прекращению считывания ДНК у 5"-конца и присоединения группы адениновых оснований к 3"-концу РНК. Последний процесс позволяет стабилизировать химическую структуру полученной РНК. В бактериальных клетках имеется два вида терминации. Это Rho-зависимый и Rho-независимый процесс.

Первый протекает в присутствии Rho-белка и сводится к простому обрыву водородных связей между матричным участком ДНК и синтезированной РНК. Второй, Rho-независимый, происходит после появления стебель-петли, если за ней имеется совокупность урациловых оснований. Эта комбинация приводит к отсоединению РНК от матрицы ДНК. Очевидно, что терминация транскрипции — это ферментативный процесс, однако конкретных его биокатализаторов пока найти не удается.

Вирусная транскрипция

Вирусные тельца не имеют собственной системы биосинтеза белка, а потому не могут размножаться без эксплуатации клеток. Но вирусы имеют свой генетический материал, который нужно реализовывать, а также встраивать в гены зараженных клеток. Для этого они имеют ряд ферментов (или эксплуатируют ферментные системы клетки), которые транскрибируют свою нуклеиновую кислоту. То есть этот фермент на основании генетической информации вируса синтезирует аналог матричной РНК. Но он представляет собой совсем не РНК, а ДНК-полимер, комплементарный генам, например, человека.

Это полностью нарушает традиционные принципы транскрипции в биологии, что следует рассмотреть на примере вируса HIV. Его фермент ревертаза из вирусной РНК способен синтезировать ДНК, комплементарную нуклеиновой кислоте человека. При этом процесс синтеза комплементарной ДНК на основании РНК называется обратной транскрипцией. Это в биологии определение процесса, ответственного за встраивание наследственной информации вируса в геном человека.

Транскрипция в биологии, осуществляющийся в живых клетках биосинтез рибонуклеиновой кислоты (РНК) на матрице ‒ дезоксирибонуклеиновой кислоте (ДНК). Т. ‒ один из фундаментальных биологических процессов, первый этап реализации генетической информации, записанной в ДНК в виде линейной последовательности 4 типов мономерных звеньев ‒ нуклеотидов (см. Генетический код ). Т. осуществляется специальными ферментами ‒ ДНК зависимыми РНК-полимерами. В результате Т. образуется полимерная цепь РНК (также состоящая из нуклеотидов), последовательность мономерных звеньев которой повторяет последовательность мономерных звеньев одной из двух комплементарных цепей копируемого участка ДНК. Продуктом Т. являются 4 типа РНК, выполняющих различные функции: 1) информационные, или матричные, РНК, выполняющие роль матриц при синтезе белка рибосомами (трансляция ); 2) рибосомальные РНК, являющиеся структурными компонентами рибосом ; 3) транспортные РНК, являющиеся основными элементами, осуществляющими при синтезе белка перекодирование информации, заключённой в информационной РНК, с языка нуклеотидов на язык аминокислот; 4) РНК, играющие роль затравки репликации ДНК. Т. ДНК происходит отдельными участками, в которые входит один или несколько генов (см., например, Оперон ). Фермент РНК-полимераза «узнаёт» начало такого участка (промотор), присоединяется к нему, расплетает двойную спираль ДНК и копирует, начиная с этого места, одну из её цепей, перемещаясь вдоль ДНК и последовательно присоединяя мономерные звенья ‒ нуклеотиды ‒ к образующейся РНК в соответствии с принципом комплементарности . По мере движения РНК-полимеразы растущая цепь РНК отходит от матрицы и двойная спираль ДНК позади фермента восстанавливается (рис. ). Когда РНК-полимераза достигает конца копируемого участка (терминатора), РНК отделяется от матрицы. Число копий разных участков ДНК зависит от потребности клеток в соответственных белках и может меняться в зависимости от условий среды или в ходе развития организма. Механизм регуляции Т. хорошо изучен у бактерий; изучение регуляции Т. у высших организмов ‒ одна из важнейших задач молекулярной биологии .

Перенос информации возможен не только с ДНК на РНК, но и в обратном направлении ‒ с РНК на ДНК. Подобная обратная Т. происходит у РНК-содержащих опухолеродных вирусов . В их составе обнаружен фермент, который после заражения клеток использует вирусную РНК как матрицу для синтеза комплементарной нити ДНК. В результате образуется двунитевой РНК-ДНК гибрид, используемый для синтеза второй нити ДНК, комплементарной первой. Возникающая двуспиральная ДНК, несущая всю информацию исходной РНК, может встраиваться в хромосомы клетки, пораженной вирусом, и вызывать её злокачественное перерождение. Открытие обратной Т. послужило веским подтверждением вирусно-генетической теории рака, выдвинутой советским учёным Л. А. Зильбером . Обратная Т., возможно, играет важную роль в системах реализации и накопления информации в нормальных клетках, например при эмбриональном развитии.

Фермент, осуществляющий обратную Т.‒ РНК зависимая ДНК-полимераза (обратная транскриптаза, ревертаза), подобен по свойствам ДНК зависимым ДНК-полимеразам и значительно отличается от ДНК зависимых РНК-полимераз, ведущих Т.

Лит.: Темин Г., РНК направляет синтез ДНК, «Природа», 1972, № 9; Гершензон С. М., Обратная транскрипция и ее значение для общей генетики и онкологии, «Успехи современной биологии», 1973, т. 75, №3; Стент Г., Молекулярная генетика, пер. с англ., М., 1974, гл. 16.

  • - биосинтез молекул РНК, на соотв. участках ДНК; первый этап реализации генетич. информации в живых клетках...

    Биологический энциклопедический словарь

  • - процесс переноса генетической информации с генома на иРНК. Осуществляется полимеразами...

    Словарь микробиологии

  • - См. сопряженная с трансляцией...
  • - transcription - .Синтез РНК на матрице ДНК - первый этап реализации генетической информации; у прокариот Т. осуществляется с участием холофермента РНК-полимеразы Молекулярная биология и генетика. Толковый словарь

  • - перенос информации о нуклеотидной последовательности ДНК на информационную РНК в процессе синтеза белков...

    Словарь ботанических терминов

  • - биосинтез молекул РНК на соотв. участках ДНК; первый этап реализации генетич...

    Естествознание. Энциклопедический словарь

  • - биосинтез молекул РНК на соответствующих участках ДНК, как первый этап реализации генетической информации в клетке, в процесе которого последовательность нуклеотидов ДНК «переписывается» в нук-леотидную...

    Начала современного Естествознания

  • - Наверное, вам иногда приходилось слышать, как, объявляя очередной номер концертной программы, ведущий фортепианного вечера говорит: «Бах -- Бузони. Чакона». Или: «Шуберт -- Лист. Серенада». «Глинка -- Балакирев...

    Музыкальный словарь

  • - в почерковедении состав подписи, определенная последовательность выполнения элементов подписи. Виды Т.: буквенная - подпись состоит только из букв...

    Криминалистическая энциклопедия

  • - в биологии первый этап реализации генетической информации в клетке, в процессе которого происходит биосинтез молекул информационной рибонуклеиновой кислоты на матрице дезоксирибонуклеиновой кислоты...

    Большой медицинский словарь

  • - письменное изображение звуков и форм известного языка, обладающего или не обладающего собственной системой письма, при помощи письменной системы, обычно данному языку не свойственной и принадлежащей...

    Энциклопедический словарь Брокгауза и Евфрона

  • - I Транскри́пция письменное воспроизведение слов и текстов с учётом их произношения средствами определённой графической системы. Т. бывает научная и практическая...

    Большая Советская энциклопедия

  • - биосинтез молекул РНК на соответствующих участках ДНК...

    Современная энциклопедия

  • - переложение музыкального произведения для какого-либо инструмента. Например, транскрипция для фортепьяно песен Ф. Шуберта, фрагментов из опер Дж. Верди, В.А. Моцарта, принадлежащие Ф. Листу...

    Современная энциклопедия

  • - в биологии - биосинтез молекул РНК на соответствующих участках ДНК...

    Большой энциклопедический словарь

  • - Транскрипция - это система передачи правильного звучания слова какого-либо языка при помощи каких-либо основных символов и дополнительных знаков. Транскрипция может осуществляться средствами графики своего языка...

    Правила русского правописания

"Транскрипция (в биологии)" в книгах

Обратная транскрипция - создание ДНК-копии по матрице РНК

Из книги Что, если Ламарк прав? Иммуногенетика и эволюция автора Стил Эдвард

Обратная транскрипция - создание ДНК-копии по матрице РНК За десять лет после открытия структуры ДНК и расшифровки генетического кода сформулированная Джеймсом Уотсоном в 1952 г. гипотеза об однонаправленном переносе генетической информации (от нуклеиновых кислот к

Обратная транскрипция

автора

Транскрипция

автора

Обратная транскрипция

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Обратная транскрипция Некоторые РНК-содержащие вирусы (вирус саркомы Рауса, ВИЧ) обладают уникальным ферментом – РНК-зависимой ДНК-полимеразой, часто называемой обратной транскриптазой или ревертазой. Этот фермент обладает время активностями. Первая из них –

Транскрипция

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Транскрипция Транскрипцией называется процесс переноса генетической информации с ДНК на РНК. Матрицей для синтеза РНК служит только одна из двух нитей ДНК (так называемая смысловая цепь). Транскрипция происходит не на всей молекуле ДНК, а на участке одного гена. Ген –

Транскрипция

Из книги Дао - путь воды автора Уотс Алан

Транскрипция На сегодняшний день не существует во всех отношениях удовлетворительного способа транскрипции китайских и японских слив. Слово "Дао" произносится как "дау" в Пекине, "тоу" в Кантоне и "доо" в Токио. И если бы мне вздумалось заменить одним из этих слов

Из книги Справочник по правописанию и стилистике автора Розенталь Дитмар Эльяшевич

§ 74. Транскрипция иностранных слов Написания иностранных слов (речь идет не о словах иноязычного происхождения, заимствованных и освоенных русским языком, а о словах, сохраняющих свой иноязычный «облик», звучание и остающихся «чужеродным телом» в составе русского языка)

§ 74. Транскрипция иностранных слов

Из книги Справочник по правописанию, произношению, литературному редактированию автора Розенталь Дитмар Эльяшевич

§ 74. Транскрипция иностранных слов 1. В любом языке, помимо исконных слов и освоенных заимствований, используются слова и сочетания, сохраняющие свой иноязычный облик и воспринимающиеся как вкрапления из других языков. Они могут оформляться как латиницей alma mater, так и

Транскрипция

автора Брокгауз Ф. А.

Транскрипция Транскрипция (лат. Transscriptio, грамм.) – письменное изображение звуков и форм известного языка, обладающего или не обладающего собственной системой письма, при помощи письменной системы, обычно данному языку не свойственной и принадлежащей какому-нибудь

Транскрипция

Из книги Энциклопедический словарь (Т-Ф) автора Брокгауз Ф. А.

Транскрипция Транскрипция – переложение вокального или инструментального сочинения на фортепиано. Т. должна быть сделана так, как будто сочинение написано специально для фортепиано. Лист первый стал писать Т. и нашел многих подражателей. Капитальным трудом в области Т.

Транскрипция (в биологии)

БСЭ

Транскрипция (в музыке)

Из книги Большая Советская Энциклопедия (ТР) автора БСЭ

Транскрипция (переписывание)

Из книги Большая Советская Энциклопедия (ТР) автора БСЭ

ТРАНСКРИПЦИЯ – ИГРА

автора Кундера Милан

ТРАНСКРИПЦИЯ – ИГРА Будем различать две вещи. С одной стороны: общую тенденцию реабилитировать забытые принципы музыки прошлого, тенденцию, которая проходит через все творчество Стравинского и его великих современников; с другой стороны: прямой диалог, который ведет

ТРАНСКРИПЦИЯ-ИГРА У КАФКИ

Из книги Нарушенные завещания автора Кундера Милан

ТРАНСКРИПЦИЯ-ИГРА У КАФКИ До чего странный роман - Америка Кафки: в самом деле, почему этот молодой двадцатидевятилетний прозаик перенес действие своего первого романа на континент, где никогда не бывал? Этот выбор показывает ясное намерение: не создавать реализм; или

Транскрипция (в биологии) - Транскрипция в биологии, осуществляющийся в живых клетках биосинтез рибонуклеиновой кислоты (РНК) на матрице? дезоксирибонуклеиновой кислоте (ДНК). Т. ? один из фундаментальных биологических процессов, первый этап реализации генетической информации, записанной в ДНК в виде линейной последовательности 4 типов мономерных звеньев? нуклеотидов (см. Генетический код). Т. осуществляется специальными ферментами? ДНК зависимыми РНК-полимерами. В результате Т. образуется полимерная цепь РНК (также состоящая из нуклеотидов), последовательность мономерных звеньев которой повторяет последовательность мономерных звеньев одной из двух комплементарных цепей копируемого участка ДНК. Продуктом Т. являются 4 типа РНК, выполняющих различные функции: 1) информационные, или матричные, РНК, выполняющие роль матриц при синтезе белка рибосомами (трансляция); 2) рибосомальные РНК, являющиеся структурными компонентами рибосом; 3) транспортные РНК, являющиеся основными элементами, осуществляющими при синтезе белка перекодирование информации, заключённой в информационной РНК, с языка нуклеотидов на язык аминокислот; 4) РНК, играющие роль затравки репликации ДНК. Т. ДНК происходит отдельными участками, в которые входит один или несколько генов (см., например, Оперон). Фермент РНК-полимераза «узнаёт» начало такого участка (промотор), присоединяется к нему, расплетает двойную спираль ДНК и копирует, начиная с этого места, одну из её цепей, перемещаясь вдоль ДНК и последовательно присоединяя мономерные звенья? нуклеотиды? к образующейся РНК в соответствии с принципом комплементарности По мере движения РНК-полимеразы растущая цепь РНК отходит от матрицы и двойная спираль ДНК позади фермента восстанавливается (рис.). Когда РНК-полимераза достигает конца копируемого участка (терминатора), РНК отделяется от матрицы. Число копий разных участков ДНК зависит от потребности клеток в соответственных белках и может меняться в зависимости от условий среды или в ходе развития организма. Механизм регуляции Т. хорошо изучен у бактерий; изучение регуляции Т. у высших организмов? одна из важнейших задач молекулярной биологии

Перенос информации возможен не только с ДНК на РНК, но и в обратном направлении? с РНК на ДНК. Подобная обратная Т. происходит у РНК-содержащих опухолеродных вирусов В их составе обнаружен фермент, который после заражения клеток использует вирусную РНК как матрицу для синтеза комплементарной нити ДНК. В результате образуется двунитевой РНК-ДНК гибрид, используемый для синтеза второй нити ДНК, комплементарной первой. Возникающая двуспиральная ДНК, несущая всю информацию исходной РНК, может встраиваться в хромосомы клетки, пораженной вирусом, и вызывать её злокачественное перерождение. Открытие обратной Т. послужило веским подтверждением вирусно-генетической теории рака, выдвинутой советским учёным Л. А. Зильбером Обратная Т., возможно, играет важную роль в системах реализации и накопления информации в нормальных клетках, например при эмбриональном развитии.

Фермент, осуществляющий обратную Т.? РНК зависимая ДНК-полимераза (обратная транскриптаза, ревертаза), подобен по свойствам ДНК зависимым ДНК-полимеразам и значительно отличается от ДНК зависимых РНК-полимераз, ведущих Т.

Лит.: Темин Г., РНК направляет синтез ДНК, «Природа», 1972, № 9; Гершензон С. М., Обратная транскрипция и ее значение для общей генетики и онкологии, «Успехи современной биологии», 1973, т. 75, №3; Стент Г., Молекулярная генетика, пер. с англ., М., 1974, гл. 16.

Б. Г. Никифоров. Большая советская энциклопедия. - М.: Советская энциклопедия 1969-1978